关注我们: 登录 | 会员中心 | 手机版 | English

当前位置:中仿科技(CnTech)» 文献参考 » 高端装备制造仿真技术高端装备制造仿真技术
字体大小: 打印

基于运动中组织应力应变预测的人体膝关节有限元模型的建立和验证

原文作者:
  Spencer Wangerin
发布时间:
  2014-08-21
来    源:
  the Faculty of California Polytechnic State University
下载链接:

Abstract

Osteoarthritis (OA) is a degenerative condition of cartilage and is the leading cost of disability in the United States. Motion analysis experiments in combination with knee-joint finite element (FE) analysis may be used to identify exercises that maintain knee-joint osteochondral (OC) loading at safe levels for patients at high-risk for knee OA, individuals with modest OC defects, or patients rehabilitating after surgical interventions. Therefore, a detailed total knee-joint FE model was developed by modifying open-source knee-joint geometries in order to predict OC tissue stress and strain during the stance phase of gait. The model was partially validated for predicting the timing and locations of maximum contact parameters (contact pressure, contact area, and principal Green- Lagrangian strain), but over-estimated contact parameters compared with both published in vivo studies and other FE analyses of the stance phase of gait. This suggests that the model geometry and kinematic boundary conditions utilized in this FE model are appropriate, but limitations in the material properties used, as well as potentially the loading boundary conditions represent primary areas for improvement.