原文作者: | Young S. Shin and Nathan A. Schneider | |
发布时间: | 2014-08-20 | |
来 源: | 74th Shock and Vibration Symposium | |
下载链接: |
Abstract
During World War II many surface combatants were damaged or severely crippled by close-proximity underwater explosions from ordnance that had actually missed their target. Since this time all new classes of combatants have been required to conduct shock trial tests on the lead ship of the class in order to test the survivability of mission essential equipment in a severe shock environment. While these tests are extremely important in determining the vulnerabilities of a surface ship, they require an extensive amount of preparation, man-hours, and money. Furthermore, these tests present an obvious danger to the crew on board, the ship itself, and any marine life in the vicinity. Creating a virtual shock environment by use of a computer to model the ship structure and the surrounding fluid presents a valuable design tool and an attractive alternative to these tests. The research work shown in this paper investigated the accuracy of shock simulation using the shock trials conducted on USS WINSTON S. CHURCHILL (DDG 81) in 2001. All three explosions DDG 81 was subjected to are simulated and the resulting predictions compared with actual shock trial data. The ship shock modeling and simulation strategy is discussed and the effects of fluid volume size, mesh density, mesh quality are also investigated.